
Journal of Information Technology, computer science and Electrical Engineering (JITCSE)
Vol. 1, No. 3, October 2024, pp. 544~551
ISSN: 3046-4900, DOI: 10.30596/jitcse 544

Journal homepage: https:/ysmk.org/journals/index.php/JITCSE

Hybrid Analysis Approach for Detecting Mobile Security Threats

Yusfrizal1, Mutiara Sovina 2, Faisal Amir Harahap3, Ivi Lazuly4
1Department of Information Management, Gihon Polytechnic, Indonesia

2,3,4Department of Informatics, Potensi Utama University, Indonesia

ABSTRACT
As technology continues to advance rapidly, smartphones are becoming increasingly powerful, drawing a large
number of users with innovative features provided by mobile operating systems like Android. However, the
security vulnerabilities of these systems make Android devices frequent targets for hackers and cyber
criminals. As a result, research on effective and efficient mobile threat analysis has become a critical topic in the
field of cyber security, employing methods such as static and dynamic analysis. This paper proposes a hybrid
approach that combines static and dynamic analysis to detect security threats and attacks in mobile
applications. The proposed method integrates data states and software execution along critical test paths.
Initially, static analysis is used to identify potential attack paths based on Android APIs and existing attack
patterns. This is followed by dynamic analysis, which executes the program along these paths within a focused
scope to determine the likelihood of an attack by comparing detected paths with known attack patterns. In the
runtime phase of dynamic analysis, the approach reports types of attack scenarios related to confidential data
leakage, such as web browser cookies, while ensuring no actual critical or protected data on mobile devices is
accessed.

Keyword: hacker; cybercriminal; cyber security.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Corresponding Author:
Yusfrizal,
Department of Information Management
Gihon Polytechnic
Jl. Dalil Tani No.48, Tomuan, Siantar, Indonesia.
Email : yusfrizal80@gmail.com

Article history:
Received Oct 19, 2024
Revised Oct 23, 2024
Accepted Oct 30, 2024

1. INTRODUCTION
The widespread use of smartphones has also made them a prime target for hackers. In recent years,
there has been a notable rise in malware specifically targeting the Android operating system. Android
OS is often labeled as the "worst platform for malware" due to several factors (Ahvanooey et al., 2020).
Firstly, the Android SDK is freely accessible to everyone, enabling hackers to invest time in creating
and distributing malicious software. Secondly, the application validation process may not be robust
enough to detect vulnerabilities inherent to the Java programming language. As a result, malware can
be introduced either intentionally or unintentionally. Most of these malicious programs are
sophisticated, multi-functional Trojans designed to intercept sensitive information stored on users’
devices (Rutherford & Wu, 2023).

Android smartphones are particularly attractive to attackers due to their dual role as tools for
increased mobility and as repositories for sensitive information. The prevalence of malicious
applications in the Android ecosystem stems from weaknesses in Android information security
(Acharya et al., 2022). The CIA triad—Confidentiality, Integrity, and Availability—offers a framework
to understand these security issues. Confidentiality issues arise when sensitive information or
resources are exposed, often due to insecure programming practices like privilege escalation, which
grants unnecessary permissions to applications. Such vulnerabilities may unintentionally leak data or
intentionally open backdoors for spyware, allowing theft of private information such as contact lists
and SMS (Syed et al., n.d.).

The integrity principle focuses on ensuring that data remains unaltered and protected from
interception and modification, especially during transmission. For instance, preventing Man-in-the-
Middle attacks is a key concern under this principle. Availability ensures that information is accessible
without disruption or intentional delays. However, maintaining all three principles simultaneously is
challenging, and attackers often exploit these gaps, leading to information leaks (Mitsarakis, 2023). To

http://creativecommons.org/licenses/by-sa/4.0/

ISSN: 3046-4900

545

address these threats, two primary techniques are used to detect malicious applications: static analysis
and dynamic analysis.

Static Analysis is a white-box method that examines an application's source code to identify
vulnerabilities, malicious code, and security threats without executing the program. This involves
lexical and semantic analysis of source code, followed by constructing an Abstract Semantic Tree (AST)
for further examination. Common static analysis techniques include lexical analysis, safety rule
enforcement, type inference, constraint analysis, and data flow analysis (Melo et al., 2020). However,
static analysis alone cannot uncover all threats or provide detailed insights into potential attack
scenarios without program execution.

Dynamic Analysis is unlike static analysis; dynamic analysis operates without access to source
code. It tests applications in a runtime sandbox environment, running test cases to observe behavior
and identify subtle vulnerabilities or partial attack paths. Although dynamic analysis can reveal
runtime issues, it is resource-intensive and impractical for evaluating entire programs exhaustively.
Instead, it is often tailored to specific scenarios (Melo et al., 2020).

Each method has its strengths and limitations, making a combination of both approaches more
effective for comprehensive security analysis.

2. RELATED WORK
The rising prevalence of malware necessitates the development of tools capable of automatically
detecting malicious applications. Malware refers to software intentionally designed to harm systems or
perform undesirable actions (Narwal et al., 2019). Various techniques have been proposed to
differentiate malware from legitimate software, with permission management and information leakage
being primary concerns in more than 60% of related research papers. Two widely used methods for
detecting Android malware targeting users’ private information are taint analyzers and signature-
based detectors. Taint analyzers trace the flow of sensitive data to detect potential leaks, while
signature-based detectors identify malware based on predefined patterns or characteristics.
Additionally, different techniques have been developed to address threats against the CIA principles
(Confidentiality, Integrity, and Availability), ensuring robust security measures to protect sensitive
information and maintain system functionality (Mughal, 2020).

For information confidentiality, also known as information leakage, TaintDroid is one of the
widely used tools that employs taint analysis to track the flow of sensitive data through third-party
applications. Its primary objective is to detect if sensitive data is being leaked from the system via
untrusted applications. Another tool that applies taint analysis is FlowDroid. FlowDroid is a context-,
flow-, field-, object-sensitive, and lifecycle-aware static taint analysis tool designed specifically for
Android applications (Zhang et al., 2021). It monitors the path from data sources to sinks to detect
malicious behaviors.

The first Android analysis tool, ScanDroid, developed by Adam et al., incrementally checks
applications as they are installed by extracting security specifications from application manifests and
verifying that data flows according to the defined specifications. Additionally, tools like Apposocopy
propose a semantics-based approach for identifying various classes of Android malware, focusing on
private user information (Alswaina & Elleithy, 2020). It combines pattern-based detection with
signature matching algorithms to detect Android malware effectively.

For information integrity, techniques are designed to examine whether private data remains
unchanged as it flows during execution. Integrity ensures that information arrives at its destination
exactly as it was at the source, without unauthorized modifications. Since additional permissions are
often required for extra operations, static analysis techniques such as DroidRay check for privilege
escalation to detect malware (Alzubaidi, 2021).

For information availability, techniques focus on ensuring the accessibility of data, which can
be achieved by constructing control flow graphs to propagate intents from APIs to top-level functions.
A variety of techniques have been developed to detect threats against the CIA principles. In this paper,
we focus on information confidentiality attacks and the corresponding strategies used to mitigate
these risks.

A. Vulnerability in Android Platform

 ISSN: 3046-4900

Journal homepage: https:/ysmk.org/journals/index.php/JITCSE

546

Mobile application security has become one of the most pressing issues in the world of cybersecurity,
becoming increasingly critical with the rise in mobile applications. Smartphones, acting as personal
information repositories that store data such as phone numbers, SMS, and even financial details,
naturally attract the attention of attackers. According to guidelines from Carnegie Mellon University,
secure programming practices on the Android platform aim to address noncompliant coding practices
that could lead to vulnerabilities being exploited. In this section, we will first analyze vulnerabilities in
the Android platform and then provide common examples found in real-world applications to highlight
the patterns used by malware attackers (Yadav et al., 2022).

Android applications are built using four primary components: Activities, Services, Content
Providers, and Broadcast Receivers. Each component serves different purposes within Android apps.
Activities provide a user interface for interaction, Services run in the background to perform long-term
tasks, Content Providers allow manipulation of shared personal data, and Broadcast Receivers respond
to system-wide broadcasts (Cai et al., 2020). These components can communicate with each other
through Intents, which are categorized as implicit or explicit intents, depending on how the intent is
declared. Intents act like messengers, carrying messages between components, making them potential
points of vulnerability that could lead to information leakage, as previously noted in DRD.

Content Providers are designed to manage and share sets of app data across different
applications. However, this makes them a common target for malware, which often exploits them to
access personal information when appropriate permissions are granted. By default, app data is private
to the app, but Content Providers serve as an interface for sharing data between apps. They interact
with databases using methods such as `insert()`, `query()`, `update()`, and `delete()`, utilizing URI
starting with “content://”. Improper implementation of Content Providers can lead to vulnerabilities,
such as SQL injection and path traversal attacks.

B. WebView Vulnerability
More and more Android applications use WebView to display web content and enable user
interactions. While WebView provides significant convenience, it also introduces vulnerabilities that
can be exploited by attackers. This is due to how WebView is implemented. When an HTML page is
loaded in WebView, the application generates two folders: one for data cache and another for browsing
history. The cache stores URLs, while cookies are saved in `webview.db`, as shown in Figure 1. To view
the structure of the database, it’s possible to export `webview.db` from the device to the local file
system.

The code below demonstrates malware that leverages Web View in Android applications to
display web pages to users, where cookies are stored in `webview.db` within the application package.
Attackers can query this database to retrieve sensitive data and transmit it using the necessary
permissions. The structure of the tables within `webview.db` is depicted in Figure 1. User browsing
history records are categorized and stored in the database. While this data can be useful for application
providers, such as performing shopping habit analysis, it can also be exploited by attackers.

In this example, the malware functions as a browser, allowing users to surf the internet,
during which it collects cookies stored by Web View. Once it has access to the browsing history, the
malware sends out the collected data using a standard HTTP POST request.

ISSN: 3046-4900

547

Fig.1 webview.db
In this attack scenario, attackers target the browsing history stored in the application

database. Due to the use of Web View, the history records and cookies are saved within the application
package, allowing malicious code to be embedded to extract data from the database. The codes
provided in the example demonstrate at least two methods for spying on cookies. Attackers can focus
on the cookie history stored in the application database, as well as intercept the current session to
steal sensitive information.

The only permission required is Internet, which is commonly used even in legitimate Android
applications. In this case, it becomes challenging to detect malware simply by examining the app's
manifest. However, dynamic analysis can reveal the data flow path, showing how data is transferred
from the storage location to an untrusted website, raising suspicion.

Get Cookie History
// usage of Web View in application
webView = (Web View)findViewById(R.id.webView);
//get cookies history SQLiteDatabase database =
SQLiteDatabase.openDatabase(getDatabasePath(“webvie w.db”).getAbsolutePath(), null,
SQLiteDatabase.OPEN_READONLY);
Cursor cursor = database.rawQuery(“select * from cookies”, new String[] {});
StringBuilder sb = new StringBuilder();
if(cursor.moveToFirst()){
do{
sb.append(cursor.getString(cursor.getColumnInd ex(“name”)) + “=” +
cursor.getString(cursor.getColumnIndex(“value”)
) + “;”);
} while(cursor.moveToNext());
}
//HttpPost to send out sensitive data HttpClient client = new DefaultHttpClient(); HttpPost post = new
HttpPost("http://ip:port/Mytest/cookie/stealinginfo.php");
post.setEntity(sb);
HttpResponse response = client.execute(post);

Get Current Session Cookie
// usage of Web View in application webView = (Web View)findViewById(R.id.webView);
webView.addJavaScriptInterface(new MyJavaScriptInterface, “MyInterface”);
//get cookies of current session via JavaScript String js =
“document.forms[0].onsubmit=function(event){var email =
document.getElementById(\"email\").value;var pwd =
document.getElementById(\"pass\").value;window.M
yInterface.saveInfo(email,pwd);window.MyInterface.s aveCookie(document.cookie);return true;}”;
//execute JavaScript to get current session cookie view.loadUrl(“javascript:”+js);
//send out via HTTP POST request

Use Permission
<uses-permission android:name="android.permission.INTERNET"/>

As outlined in the analysis, the general methods used to gather personal data—whether stored
on devices or generated by applications—follow two main phases. First, they request the necessary
permissions in the manifest file, which grant access to specific data and allow the app to send that data
externally. Second, they exploit the APIs provided by the Android SDK to extract and communicate
data.

3. RESULTS AND DISCUSSION
Among the vast array of malware, some pose direct harm to devices, while others focus on
eavesdropping on personal data. These malicious applications can take on various forms—some

 ISSN: 3046-4900

Journal homepage: https:/ysmk.org/journals/index.php/JITCSE

548

appear as standalone apps, while others disguise themselves as malicious versions that exploit
vulnerabilities in existing applications. To differentiate malware from legitimate software, it is crucial
to first analyze the patterns of different types of applications, as summarized in Table 1.

A. Opinion Survey of Workshop Participants
A survey was administered to participants at the conclusion of the workshop to assess its effectiveness
and gather their feedback. The overall satisfaction rating averaged 3.93 out of 5, with 5 representing
the highest level of satisfaction. Table 1 provides the average ratings for various aspects of the
workshop, including the effectiveness of presentations and lab sessions, as well as the relevance of the
information to the participants' teaching and research. These ratings were also measured on a 5-point
scale, where 5 indicates maximum effectiveness and usefulness.

Table 1. Patterns to Send Out Data

Ways to send out data Patterns Permissions
By Internet S1 create HttpClient

S2 make POST request to the given URL
S3 build data
S4 set HttpPost entity
S5 execute POST request to the given URL

INTERNET

By SmsManager S1 get SmsManager object
S2 send text message to specified mobile number

SEND_SMS

By builtin Intent S1 use ACTION_VIEW action to launch SMS
S2 set Intent data as “smsto”
S3 set Intent type as “vnd.androiddir/mms-sms”
S4 set phone number and SMS body
S5 start the Intent to send SMS

No

By Bluetooth S1 get the BluetoothAdapter
S2 enable Bluetooth
S3 find paired devices
S4 connect as client
S5 send data to server

BLUETOOTH

By Socket S1 set up socket connection by specifying server IP and port number
S2 connect as client
S3 send data to server

INTERNET WIFI

There are numerous methods, beyond the patterns mentioned above, that can be used to

exfiltrate personal data from users' devices. The most common methods involve the use of the Internet
or SMS. By leveraging the appropriate permissions and the capabilities of the Android SDK API,
attackers can consistently find ways to eavesdrop on sensitive information. The general process
typically follows these steps: 1) Determine the method of data extraction and request the necessary
permissions. 2) Prepare the targeted data for exfiltration. 3) Utilize API calls to transmit the data to the
attackers.

This paper introduces a hybrid method that combines the strengths of static and dynamic
analysis to examine the data flow paths of suspicious applications. The method begins with APK files as
inputs, representing the applications to be analyzed. It is composed of two main phases: 1) Static
Analysis Phase : During this phase, the APK files are disassembled to extract the `AndroidManifest.xml`.
The configuration files are meticulously analyzed to gather basic application information, such as the
declared permissions and core components utilized. This information is crucial for constructing a
pattern library to facilitate further analysis. 2) Dynamic Analysis Phase (Sandbox Testing): In this
phase, the application is executed in a controlled environment to track the flow of confidential
information through the system. The features identified during the static analysis phase serve as input
for this dynamic testing phase.

Malicious applications are often disguised as legitimate ones using various patterns. Another
research highlights that malicious apps are frequently found in the game category of the official
Android Google Play Store. Their analysis of the top 80 legitimate game apps was conducted to uncover
differences in system event patterns between normal and malicious applications.

Generally, normal applications only request permissions necessary for their functionality,
unlike malicious applications that often request excessive permissions. For instance, a game
application requesting permissions such as `READ_SMS` or `SEND_SMS` should raise suspicion,
whereas permissions like `LOCATION` or `INTERNET` might be more justifiable. One common attack

ISSN: 3046-4900

549

pattern in malware is privilege escalation, where additional permissions are exploited to perform
malicious actions. These static patterns can be effectively detected through static analysis.

In the first phase of the hybrid analysis method, static analysis is utilized to gather essential
information about the application by disassembling its APK file. The primary focus is on analyzing the
`AndroidManifest.xml` file to extract critical details, such as declared permissions, the usage of core
components, and the launching activity. This foundational information serves as the basis for further
analysis.

Typically, normal applications consume personal data retrieved from the device for legitimate
purposes, whereas malware seeks to steal confidential information for malicious use. To determine
whether data exits the system, a symbolic execution technique is employed to trace the application's
internal logic. This approach is a form of dynamic analysis, also known as sandbox testing. In the
second phase of the proposed hybrid method, features of the source code are extracted and replaced
with utility functions to monitor the data flow path, enabling the detection of suspicious activity.

Fig. 2 Data Flow Path in Normal Apps vs. Data Flow Path in Malware

The analysis is divided into two primary phases. Phase One: This involves static analysis,

where the Apktool is utilized to disassemble the packaged APK file. The input for this phase is the APK
file, which contains the manifest file, dex file, and all required resources. Apktool extracts these
components from the APK file. The main focus in this phase is the analysis of the manifest file. For
instance, as described in section three, the manifest file indicates that only the INTERNET permission
is granted, along with identifying the package information and launching activity. This extracted
information is crucial for identifying sensitive API calls, which are further analyzed in the second
phase. A custom tool previously developed is employed at this stage for tasks such as reading, writing,
and searching files. This tool helps pinpoint the location where data exits the system and inserts code
fragments to trace API calls. Phase Two: Dynamic analysis is conducted in this phase. The application,
modified in the previous step, is executed in a controlled environment. This method is referred to as
symbolic execution because it simulates the application's behavior to trace the API calling path without
performing any actual malicious actions. This phase focuses on understanding the application's data
flow and identifying potential points of vulnerability or data leakage.

 ISSN: 3046-4900

Journal homepage: https:/ysmk.org/journals/index.php/JITCSE

550

Fig. 3 Hybrid Analysis

Fig. 6 APIs calling report

The APIs HttpPost and DefaultHttpClient are required in this context to send data to a

malicious server. In our approach, the data exit point is substituted with custom-prepared code to
monitor the sequence of method calls. In the following tables, the environment setup and technologies
used are listed.

Table 2. Environment Setup
 PC Settings IDE

Basic Environment 64-bit Operating System
Intel (R) Core (TM) i3
4.00 GB memory

Eclipse Android ADT Bundle

Table 3. Patterns to Send Out Data

 Patterns Permissions
Static Analysis Apktool-2.0.0 Reverse engineering for application disassembly
Static Analysis String Analysis Tool A self implemented Java application to read file and string pattern
Dynamic Analysis Auto-Sign Tool Sign the repackaged application

The generated report provides a clear printout of the stack status maintained by the compiler

during the application's execution. This allows us to determine whether the application in question is
malicious or not.
4. CONCLUSION

ISSN: 3046-4900

551

Android applications have rapidly developed and gained widespread popularity, largely due to the
open-source nature of the Android SDK. However, this openness also enables malicious applications to
infiltrate the Android market, often disguised as legitimate apps, impacting users' daily lives. This
security vulnerability puts sensitive data and critical information stored on Android devices at
constant risk of attack by malicious software, highlighting the need for effective methods to
differentiate malware from regular software. This paper outlines secure programming guidelines and
introduces a hybrid data path tracing approach to identify malware by analyzing noncompliant coding
practices and gathering attack patterns that exploit vulnerabilities in Android APIs. Future work will
focus on refining this method into an integrated malware analysis system, adapting it to accommodate
various mobile app formats, enhancing the precision of malware detection, and fostering a safer
environment for mobile users.

REFERENCES

Acharya, S., Rawat, U., & Bhatnagar, R. (2022). [Retracted] A Comprehensive Review of Android Security: Threats,

Vulnerabilities, Malware Detection, and Analysis. Security and Communication Networks, 2022(1), 7775917.
Ahvanooey, M. T., Li, Q., Rabbani, M., & Rajput, A. R. (2020). A survey on smartphones security: software

vulnerabilities, malware, and attacks. ArXiv Preprint ArXiv:2001.09406.
Alswaina, F., & Elleithy, K. (2020). Android malware family classification and analysis: Current status and future

directions. Electronics, 9(6), 942.
Alzubaidi, A. (2021). Recent advances in android mobile malware detection: A systematic literature review. IEEE

Access, 9, 146318–146349.
Cai, H., Fu, X., & Hamou-Lhadj, A. (2020). A study of run-time behavioral evolution of benign versus malicious apps

in android. Information and Software Technology, 122, 106291.
Melo, L. T. C., Ribeiro, R. G., Guimarães, B. C. F., & Pereira, F. M. Q. (2020). Type inference for c: Applications to the

static analysis of incomplete programs. ACM Transactions on Programming Languages and Systems
(TOPLAS), 42(3), 1–71.

Mitsarakis, K. (2023). Contemporary Cyber Threats to Critical Infrastructures: Management and Countermeasures.
Mughal, A. A. (2020). Cyber Attacks on OSI Layers: Understanding the Threat Landscape. Journal of Humanities and

Applied Science Research, 3(1), 1–18.
Narwal, B., Mohapatra, A. K., & Usmani, K. A. (2019). Towards a taxonomy of cyber threats against target

applications. Journal of Statistics and Management Systems, 22(2), 301–325.
Rutherford, D., & Wu, N. (2023). Cybersecurity Risks in the Deployment and Use of Digital Business Cards:

Implications for Organizations and End-Users. 2023 International Conference on Computational Science and
Computational Intelligence (CSCI), 765–770.

Syed, M., Detaille, M., & Sadre, R. (n.d.). " A detection system for the sources of information leaks on networked smart
devices.

Yadav, C. S., Singh, J., Yadav, A., Pattanayak, H. S., Kumar, R., Khan, A. A., Haq, M. A., Alhussen, A., & Alharby, S.
(2022). Malware analysis in IoT & android systems with defensive mechanism. Electronics, 11(15), 2354.

Zhang, J., Wang, Y., Qiu, L., & Rubin, J. (2021). Analyzing android taint analysis tools: FlowDroid, Amandroid, and
DroidSafe. IEEE Transactions on Software Engineering, 48(10), 4014–4040.

