Student Data Analysis for Decision Making Using Decision Tree
Keywords:
Data mining, C4.5, Decision Tree, RapidMinerAbstract
In today's digital era, data has become a valuable asset that supports effective decision-making in various fields, including education. In Indonesia, the education sector needs a technology-based strategy to utilize data optimally in improving the quality of education services. Data mining, as an information technology approach, plays an important role in extracting valuable information from big and complex data. Classification algorithms such as the Decision Tree, specifically the C4.5 algorithm, are widely used in data mining to build accurate decision models. This study aims to apply the C4.5 algorithm to student data to support evidence-based decision-making in education. Using RapidMiner software, this research focuses on classifying and analyzing student data to build a model that can simplify the decision-making process, making it easier to understand and implement. The results of this study show that there is a pattern of gender distribution in various classes, with some classes dominated by female students and others dominated by male students. The preprocessing stage successfully simplifies the data, so that relevant information can be analyzed more easily. These results underscore the importance of data mining technology in education data analysis for better decision-making, as well as provide new insights in designing data-driven education policies.
References
Adhitya, R. R., Wina Witanti, & Rezki Yuniarti. (2023). PERBANDINGAN METODE CART DAN NAÏVE BAYES UNTUK KLASIFIKASI CUSTOMER CHURN. INFOTECH Journal, 9(2), 307–318. https://doi.org/10.31949/infotech.v9i2.5641
Alfayed, E., Ramadeli, L., Agnestasia, R., Amalina, V., Swid, Z. H. O., & Riofita, H. (2023). ANALISIS STRATEGI PEMASARAN DAN PENJUALAN E-COMMERCE PADA TIKTOK SHOP. Jurnal Ekonomi Manajemen Dan Bisnis, 1(2), 195–201.
Firmansyach, W. A., Hayati, U., & Wijaya, Y. A. (2023). ANALISA TERJADINYA OVERFITTING DAN UNDERFITTING PADA ALGORITMA NAIVE BAYES DAN DECISION TREE DENGAN TEKNIK CROSS VALIDATION. Jurnal Mahasiswa Teknik Informatika, 7(1), 262–269.
Hariyant, I., Al-Husaini, M., & Raharja, A. R. (2024). Perbandingan Algoritma Decision Tree dan Naive Bayes dalam Klasifikasi Data Pengaruh Media Sosial dan Jam Tidur Terhadap Prestasi Akademik Siswa. Technologia : Jurnal Ilmiah, 15(2), 332. https://doi.org/10.31602/tji.v15i2.14381
Imam Nawawi, & Zaehol Fatah. (2024). Penerapan Decision Trees dalam Mendeteksi Pola Tidur Sehat Berdasarkan Kebiasaan Gaya Hidup. JURNAL ILMIAH SAINS TEKNOLOGI DAN INFORMASI, 2(4), 34–41. https://doi.org/10.59024/jiti.v2i4.969
Insan, M. K., Hayati, U., & Nurdiawan, O. (2023). ANALISIS SENTIMEN APLIKASI BRIMO PADA ULASAN PENGGUNA DI GOOGLE PLAY MENGGUNAKAN ALGORITMA NAIVE BAYES. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 478–483.
Nahjan, M. R., Heryana, N., & Voutama, A. (2023). IMPLEMENTASI RAPIDMINER DENGAN METODE CLUSTERING K-MEANS UNTUK ANALISA PENJUALAN PADA TOKO OJ CELL. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 101–104.
Risnawati, I., Rahma, S., Kusuma, F., Salsabila4, N., Nourmansyah5, A., Farhan6, A., & Irfiani, E. (2023). Klasifikasi Data Mining Untuk Mengestimasi Potensi Curah Hujan Berdampak Banjir Daerah Menggunakan Algoritma C4.5. Jurnal INSAN (Journal of Information Systems Management Innovation, 3(2), 78–84. http://jurnal.bsi.ac.id/index.php/jinsan
Risqi Ananda, M., Maharani, N. S., Fadhila, E., Rahma, A., & Nurbaiti. (2023). Data Mining Dalam Perusahaan PT Indofood Lubuk Pakam. Jurnal Ekonomi Manajemen Dan Bisnis (JEMB), 02(1), 97–102. https://doi.org/10.47233/jemb.v2i1.1009
Sholeh, M., Kumalasari Nurnawati, E., & Lestari, U. (2023). Penerapan Data Mining dengan Metode Regresi Linear untuk Memprediksi Data Nilai Hasil Ujian Menggunakan RapidMiner. Jurnal Informatika Sunan Kalijaga), 8(1), 10–21. https://archive.ics.uci.edu/ml/datasheets.php.
Sitanggang, A. S., & Nabila, A. (2024). Peran Teknologi Digital dalam Membangun Pendidikan Generasi Emas. Jurnal Pendidikan Tambusai, 8(2), 30802–30809. https://www.researchgate.net/publication/382916341
Yasin, M., Garancang, S., & Hamzah, A. A. (2024). Metode dan Instrumen Pengumpulan Data (Kualitatif dan Kuantitatif). Journal of International Multidisciplinary Research, 2(3), 161–173. https://journal.banjaresepacific.com/index.php/jimr
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Risca Sri Mentari, Muhammad Iqbal

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.