Distribution Analysis of Student Numbers by Gender Using Decision Tree and Data Visualization
Keywords:
Data mining, C4.5, Decision TreeAbstract
Rapid technological developments have brought significant changes in various sectors, including education. In the context of education, data management and analysis are important elements in supporting data-driven decision-making. Data mining, specifically the Decision Tree method, provides valuable insights into analyzing patterns from large data sets. This study uses Decision Tree modeling and data visualization through RapidMiner to analyze the distribution of the number of students based on gender in various classes at SMK Negeri 1 Stabat in the 2023-2024 school year. This research includes data collection, preprocessing, and decision tree modeling to uncover gender-based trends in various skill programs. Visualization using Scatter Plot makes it easier to present data for clearer analysis. The results of the study show that administrative and fashion skills programs are dominated by women, while engineering skills programs, such as TKR and TITL, are dominated by men. Some classes showed a more balanced gender composition. This research provides useful insights for classroom management and decision-making in the educational environment, as well as provides a basis for designing more inclusive learning programs and addressing gender imbalances in certain areas.
References
Alfayed, E., Ramadeli, L., Agnestasia, R., Amalina, V., Swid, Z. H. O., & Riofita, H. (2023). ANALISIS STRATEGI PEMASARAN DAN PENJUALAN E-COMMERCE PADA TIKTOK SHOP. Jurnal Ekonomi Manajemen Dan Bisnis, 1(2), 195–201.
Almufqi, F. M., & Voutama, A. (2023). PERBANDINGAN METODE DATA MINING UNTUK MEMPREDIKSI PRESTASI AKADEMIK SISWA. Jurnal Teknika (Jurnal Fakultas Teknik Universitas Islam Lamongan), 15(1), 61–66. https://doi.org/10.30736/jt.v15i1.929
Azizah, A., Rani, Ulum, K., Roni, F., & Reptiningsih, E. (2023). Analisis Penerapan Metode Simpleks Linier Programming Pada Home Industry Martabak. Journal of Trends Economics and Accounting Research, 4(2), 388–395. https://doi.org/10.47065/jtear.v4i2.1059
Fricticarani, A., Hayati, A., Ramdani, Hoirunisa, I., & Rosdalina, G. M. (2023). STRATEGI PENDIDIKAN UNTUK SUKSES DI ERA TEKNOLOGI 5.0. JURNAL INOVASI PENDIDIKAN DAN TEKNOLOGI INFORMASI, 4(1), 56–68.
Irmayani, W. (2021). VISUALISASI DATA PADA DATA MINING MENGGUNAKAN METODE KLASIFIKASI NAÏVE BAYES. JURNAL KHATULISTIWA INFORMATIKA, XI(1). www.bsi.ac.id
Leni, D., yermadona, H., Usra Berli, A., Sumiati, R., & Haris. (2023). Pemodelan Machine Learning Untuk Memprediksi Tensile Strength Aluminium Menggunakan Algoritma Artificial Neural Network (ANN). SURYA TEKNIKA, 10(1), 625–632.
Lestari, P. D., & Mulyawan. (2023). DATA MINING PADA PENJUALAN AIR BERSIH DI SPAM AKIDAH MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING MENGGUNAKAN RAPIDMINER. Jurnal Mahasiswa Teknik Informatika, 7(1), 412–416.
Marcelina, D., Kurnia, A., & Terttiaavini, T. (2023). Analisis Klaster Kinerja Usaha Kecil dan Menengah Menggunakan Algoritma K-Means Clustering. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(2), 293–301. https://doi.org/10.57152/malcom.v3i2.952
Supriyadi, A. (2023). Perbandingan Algoritma Naive Bayes dan Decision Tree(C4.5) dalam Klasifikasi Dosen Berprestasi. Generation Journal, 7(1), 2580–4952.
Vidiya, E. C., & Testiana, G. (2023). Analisis Pola Pembelian di Lathansa Cafe & Ramen dengan Menggunakan Algoritma FP-Growth Berbantuan RapidMiner. G-Tech: Jurnal Teknologi Terapan, 7(3), 1118–1126. https://doi.org/10.33379/gtech.v7i3.2739
Wahyuningtyas, N. P., Ratnawati, D. E., & Setiawan, N. Y. (2023). Root Cause Analysis (RCA) berbasis Sentimen menggunakan Metode K- Nearest Neighbor (K-NN) (Studi Kasus: Pengunjung Kolam Renang Brawijaya). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 7(5), 2515–2520. http://j-ptiik.ub.ac.id
Yani, A., Azmi, Z., & Suherdi, D. (2023). Implementasi Data Mining Menganalisa Data Penjualan Menggunakan Algoritma K-Means Clustering. JURNAL SISTEM INFORMASI TGD, 2(2), 315–323. https://ojs.trigunadharma.ac.id/index.php/jsi
Zafira, F., Irawan, B., & Bahtiar, A. (2024). PENERAPAN DATA MINING UNTUK ESTIMASI STOK BARANG DENGAN METODE K-MEANS CLUSTERING. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 156–161.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Risca Sri Mentari, Sri Wahyuni

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.