Application of Business Intelligence to support decision making in determining competent laws in the culinary sector in Deli Serdang Regency using the decision tree algorithm.
Keywords:
Business Intelligence, Data Mining, Decision Making, Small and Medium Culinary EnterprisesAbstract
This study examines the application of Business Intelligence (BI) in identifying high-potential culinary Small and Medium Enterprises in Deli Serdang Regency. By using the Decision Tree algorithm, a prediction model is built based on historical sales data, business characteristics, and business environment factors. The results of the model evaluation show that Decision Tree is able to classify competent Small and Medium Enterprises. Key factors that influence the success of Small and Medium Enterprises, such as product quality, marketing strategy, and access to financing, were successfully identified through decision tree analysis. This study concludes that the application of BI with the Decision Tree algorithm can be an effective tool for stakeholders in supporting the development of Small and Medium Culinary Enterprises in Deli Serdang Regency
References
Dodi Nofri Yoliadi (2023). Data Mining Dalam Analisis Tingkat Penjualan Barang Elektronik Menggunakan Algoritma K-Means .Insearch (Information System Research) Journal Volume 3, Nomor 1 Februari 2023. https://ejournal.uinib.ac.id/jurnal/index.php/insearch/article/view/5829
Apriyadi, Muhammad Ridwan Lubis, Bahrudi Efendi Damanik (2022). Penerapan Algoritma C5.0 Dalam menentukan Tingkat Pemahaman Mahasiswa Terhadap Pembelajaran Daring . Komputa Jurnal Ilmiah computer dan Informatika, Vol 11, Nomor 1. https://ojs.unikom.ac.id/index.php/komputa/article/view/7386
Zein Afrizal (2023). Kecerdasan Bisnis Konsep dan Paradigma.Jurnal Ilmu Komputer JIK Vol VI No 03 November 2023, https://jurnal.pranataindonesia.ac.id/index.php/jik/article/download/173/119/436
Sumarno & Mustafa Jauhari (2023). Sistem Pendukung Keputusan Dalam Menentukan Pemilihan Posisi Kepala Unit (KANIT) PPA dengan Metode Weight Product .Jurnal Sistem Informasi, Teknologi Informatika dan Komputer, Vol 11, Nomor 1. https://jurnal.umj.ac.id/index.php/just-it/article/view/4896
Patrisius Ando Duran, Anik Vega Vitianingsih, Moch. Syariful Riza, Anastasia Lidya Maukar, Seftin Fitri Ana Wati (2024). Data Mining Untuk Prediksi Penjualan Mengunakan Metode Simple Linier Regression .TEKNIKA, Vol 13, Nomor 1. https://ejournal.ikado.ac.id/index.php/teknika/article/view/712
Benny Haddi Irawan, Nugroho Ariyanto, Nisrina Afifah Novianti, Hanifah Widiastuti, Fedia Restu, Nurul Laili Arifin (2022). Penggunaan Power BI Untuk Pengolahan Data Non Conformance Material. Jurnal Teknologi dan Riset Terapan JATRA, Vol 4, Nomor 2. https://jurnal.polibatam.ac.id/index.php/JATRA/article/view/3885
Muhammad Rafi Nahjan, Nono Heryana, ApriadeVoutama (2023). Implementasi Rapidminer Dengan Metode Clustering K-Means untuk Analisa Penjualan pada took OJ Cell .Jurnal Mahasiswa Teknik Informatika, Vol 7, Nomor 1. https://ejournal.itn.ac.id/index.php/jati/article/view/6094
Atsna Himmatul Aliyah (2022). Peran Usaha Mikro Kecil dan Menengah (UMKM) Untuk Meningkat kan Kesejahteraan Masyarakat. Jurnal Ilmu Ekonomi, Vol 3, Nomor 1. https://jurnal.unsil.ac.id/index.php/welfare/article/download/4719/2264
Asmaul Husna Nasrullah (2021). Implementasi Algoritma Decision Tree untuk Klasifikasi Produk Laris. Jurnal Ilmiah Komputer , Vol 7, Nomor 2. https://www.neliti.com/id/publications/459443/implementasi-algoritma-decision-tree-untuk-klasifikasi-produk-laris
Rafael Nuansa Ramadhon, Aldino Ogi, Ari Permana Agung (2024). Implementasi Algoritma Decision Tree Untuk Klasifikasi Pelanggan Aktif Atau Tidak Aktif Pada Data Bank. Karimah Tauhid, Vol 3, Nomor 2. https://ojs.unida.ac.id/karimahtauhid/article/view/11952
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.