The Experiment and Simulation on Impact Characteristics of AVGAS Spray Based on Impact Phenomenon

Authors

  • Dimas Endrawan Putra Jember State University
  • Nasrul Ilminnafik Jember State University
  • M Fahrur Rozy Hentihu Jember State University
  • Muh. Nurkoyim Kustanto Jember State University
  • Danang Yudistiro Jember State University

DOI:

https://doi.org/10.61306/jitcse.v1iS1.16

Keywords:

avgas, ansys, tumbukan, spray, CFD

Abstract

Avition gasoline (avgas) is one of the fuels used for combustion of piston-type aircraft engines and uses ignition in the form of spark plugs or internal combustion engines. In recent years, the use of avgas fuel itself is very high used in high- wing light aircraft engines, namely Cessna. avgas spray phenomenon that collides with the cylinder wall may occur during fuel injection, so it will produce a changed radius and spray height, which will affect the mixing of fuel and air, later engine performance and exhaust emissions will also be affected. Therefore, it is important to know and study the spray impact phenomenon in avgas-fueled aircraft engines. This research is a spray experiment with a specified pressure and sprayed on the combustion chamber wall so that the results of the image can be studied coupled with data from experimental research, it can make research from computational fluid dynamics (CFD) simulations, providing valuable insights for future research in this field.

References

R. Mahmud, T. Kurisu, K. Nishida, Y. Ogata, J. Kanzaki, and T. Tadokoro, “Experimental study on flat-wall impinging spray flame and its heat flux on wall under diesel engine–like condition: First report—effect of impingement distance,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 233, no. 8, pp. 2187–2202, Jul. 2019, doi: 10.1177/0954407018778153. DOI: https://doi.org/10.1177/0954407018778153

K. Yamagishi et al., “Computations and Experiments of Single- Point Autoignition Gasoline Engine with Colliding Pulsed Supermulti-Jets, Single Piston and Rotary Valve,” in SAE Technical Papers, SAE International, 2016. doi: 10.4271/2016-01- 2334. DOI: https://doi.org/10.4271/2016-01-2334

Q. Zhang, J. Xia, J. Wang, Z. He, Y. Qian, and X. Lu, “Experimental investigation on spray and combustion characteristics of dual-fuel collision of biodiesel and n-butanol,” Fuel, vol. 340, May 2023, doi: 10.1016/j.fuel.2023.127613.

“STUDY OF SPRAY BREAKUP AND MIXTURE IN A GASOLINE DIRECT INJECTION ENGINE BY USING SIMULATION MUZAMMIL BIN MOHAMAD ALIAS Report submitted in partial fulfillment of the requirements for the award of Bachelor of Mechanical Engineering with Automotive Engineering FACULTY OF MECHANICAL ENGINEERING UNIVERSITY MALAYSIA PAHANG,” 2013.

M. Hilmi Bin and M. Zin, “COMPUTATIONAL STUDY OF FUEL SPRAY STRUCTURE,” 2013.

S. Wu, S. Yang, M. Wooldridge, and M. Xu, “Experimental study of the spray collapse process of multi-hole gasoline fuel injection at flash boiling conditions,” Fuel, vol. 242, pp. 109–123, Apr. 2019, doi: 10.1016/j.fuel.2019.01.027.

B. K. Fritz, W. C. Hoffmann, W. E. Bagley, G. R. Kruger, Z. Czaczyk, and & R. S. Henry, “MEASURING DROPLET SIZE OF AGRICULTURAL SPRAY NOZZLES-MEASUREMENT DISTANCE AND AIRSPEED EFFECTS,” 2014. DOI: https://doi.org/10.1615/AtomizSpr.2014008424

R. Jumadi et al., “Analysis of spray characteristics and high ambient pressure in gasoline direct injection using computational

S. J. M. Algayyim, A. P. Wandel, T. Yusaf, and I. Hamawand, “The impact of n-butanol and iso-butanol as components of butanol-acetone (BA) mixture-diesel blend on spray, combustion characteristics, engine performance and emission in direct injection diesel engine,” Energy, vol. 140, pp. 1074–1086, 2017, doi: 10.1016/j.energy.2017.09.044. DOI: https://doi.org/10.1016/j.energy.2017.09.044

A. F. Alhikami and W. C. Wang, “Experimental study of the spray ignition characteristics of hydro-processed renewable jet and petroleum jet fuels in a constant volume combustion chamber,” Fuel, vol. 283, Jan. 2021, doi: 10.1016/j.fuel.2020.119286. DOI: https://doi.org/10.1016/j.fuel.2020.119286

S. Wu, S. Yang, M. Wooldridge, and M. Xu, “Experimental study of the spray collapse process of multi-hole gasoline fuel injection at flash boiling conditions,” Fuel, vol. 242, pp. 109–123, Apr. 2019, doi: 10.1016/j.fuel.2019.01.027. DOI: https://doi.org/10.1016/j.fuel.2019.01.027

Y. Duan, D. Han, P. Li, C. Wang, H. Lin, and Z. Huang, “Experimental study on injection and macroscopic spray characteristics of ethyl oleate, jet fuel and their blend on a diesel engine common rail system,” Atomization and Sprays, vol. 25, Jan. 2015, doi: 10.1615/AtomizSpr.2015011145. DOI: https://doi.org/10.1615/AtomizSpr.2015011145

Y. Wang, B. Li, Y. Li, and F. Chen, “Experiment and simulation of spray impingement for gasoline direct injector,” Jiangsu Daxue Xuebao (Ziran Kexue Ban)/Journal of Jiangsu University (Natural Science Edition), vol. 32, pp. 410–415, Jul. 2011, doi: 10.3969/j.issn.1671-7775.2011.04.008.

M.-R. Wei, F. Liu, H. Wen, Y.-C. Liu, and Y.-S. Zhang, “Numerical simulation and experimental research of DME spray wall-impingement,” vol. 27, pp. 5–10, Apr. 2006.

H. Luo, “Experimental Investigations on Fuel Spray and Impingement for Gasoline Direct Injection Engines,” 2021. doi: 10.5772/intechopen.95848. DOI: https://doi.org/10.5772/intechopen.95848

C. Mundo, C. Tropea, and M. Sommerfeld, “Numerical and Experimental Investigation of Spray Characteristics in the Vicinity of a Rigid Wall.”

F. J. Salvador, J. J. Lopez, J. De la Morena, and M. Crialesi- Esposito, “Experimental investigation of the effect of orifices inclination angle in multihole diesel injector nozzles. Part 1 – Hydraulic performance,” Fuel, vol. 213, pp. 207–214, Feb. 2018, doi: 10.1016/j.fuel.2017.04.019. DOI: https://doi.org/10.1016/j.fuel.2017.04.019

P. Pischke, D. Martin, and R. Kneer, “COMBINED SPRAY MODEL FOR GASOLINE DIRECT INJECTION HOLLOW- CONE SPRAYS,” 2010. DOI: https://doi.org/10.1615/AtomizSpr.v20.i4.60

K. Kannaiyan and R. Sadr, “Experimental investigation of spray characteristics of alternative aviation fuels,” Energy Convers Manag, vol. 88, pp. 1060–1069, 2014, doi: 10.1016/j.enconman.2014.09.037. DOI: https://doi.org/10.1016/j.enconman.2014.09.037

A; Muddapur, Sahu, ; Srikrishna, and J. V Jose, “Spray-Wall Impingement in a Multi-Hole Gdi Injector for Split Injection at Elevated Wall Temperature and Ambient Conditions.” [Online].

Available: http://hdl.handle.net/11159/495822

W. Mathews, C. Lee, and J. Peters, “Experimental investigations of spray/wall impingement,” Atomization and Sprays - ATOMIZATION SPRAYS, vol. 13, pp. 223–242, Mar. 2003, doi: 10.1615/AtomizSpr.v13.i23.40. DOI: https://doi.org/10.1615/AtomizSpr.v13.i23.40

Y. Liu, Q. Xiang, Z. Li, S. Yao, X. Liang, and F. Wang, “Experiment and simulation investigation on the characteristics of diesel spray impingement based on droplet impact phenomenon,” Applied Sciences (Switzerland), vol. 8, no. 3, Mar. 2018, doi: 10.3390/app8030384.

X. Zhu, L. Zhao, Z. Zhao, N. Ahuja, J. Naber, and S.-Y. Lee, “An Experimental Study of Diesel Spray Impingement on a Flat Plate: Effects of Injection Conditions,” Universitat Politecnica de Valencia, Sep. 2017. doi: 10.4995/ilass2017.2017.4733. DOI: https://doi.org/10.4995/ILASS2017.2017.4733

H. Luo, K. Nishida, S. Uchitomi, Y. Ogata, W. Zhang, and T. Fujikawa, “Effect of temperature on fuel adhesion under spray- wall impingement condition,” Fuel, vol. 234, pp. 56–65, Dec. 2018, doi: 10.1016/j.fuel.2018.07.021. DOI: https://doi.org/10.1016/j.fuel.2018.07.021

M. You and G. E. Arteel, “Effect of ethanol on lipid metabolism,” Journal of Hepatology, vol. 70, no. 2. Elsevier B.V., pp. 237–248, Feb. 01, 2019. doi: 10.1016/j.jhep.2018.10.037. DOI: https://doi.org/10.1016/j.jhep.2018.10.037

K. Thanikasalam et al., “Ethanol content concerns in motor gasoline (mogas) in aviation in comparison to aviation gasoline (avgas),” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2018. doi: 10.1088/1757-899X/370/1/012009. DOI: https://doi.org/10.1088/1757-899X/370/1/012009

Y. Liu, Q. Xiang, Z. Li, S. Yao, X. Liang, and F. Wang, “Experiment and simulation investigation on the characteristics of diesel spray impingement based on droplet impact phenomenon,” Applied Sciences (Switzerland), vol. 8, no. 3, Mar. 2018, doi: 10.3390/app8030384. DOI: https://doi.org/10.3390/app8030384

Q. Zhang, J. Xia, J. Wang, Z. He, Y. Qian, and X. Lu, “Experimental investigation on spray and combustion Fuel, vol. 340, May 2023, doi: 10.1016/j.fuel.2023.127613. DOI: https://doi.org/10.1016/j.fuel.2023.127613

Downloads

Published

2024-04-01

How to Cite

Dimas Endrawan Putra, Nasrul Ilminnafik, M Fahrur Rozy Hentihu, Muh. Nurkoyim Kustanto, & Danang Yudistiro. (2024). The Experiment and Simulation on Impact Characteristics of AVGAS Spray Based on Impact Phenomenon. Journal of Information Technology, Computer Science and Electrical Engineering, 1(S1), 29–34. https://doi.org/10.61306/jitcse.v1iS1.16